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Cinematographic stereoscopic particle image velocimetry measurements were
performed to resolve small and intermediate scales in the far field of an axisymmetric
co-flowing jet. Measurements were performed in a plane normal to the axis of
the jet and the time-resolved measurement was converted to quasi-instantaneous
three-dimensional data by using Taylor’s hypothesis. The quasi-instantaneous three-
dimensional data enabled computation of all nine components of the velocity
gradient tensor over a volume. The results based on statistical analysis of the data,
including computation of joint p.d.f.s and conditional p.d.f.s of the principal strain
rates, vorticity and dissipation, are all in agreement with previous numerical and
experimental studies, which validates the quality of the quasi-instantaneous data.
Instantaneous iso-surfaces of the principal intermediate strain rate (β) show that
sheet-forming strain fields (i.e. β > 0) are themselves organized in the form of sheets,
whereas line-forming strain fields (β < 0) are organized into smaller spotty structures
(not lines). Iso-surfaces of swirling strength (a vortex identification parameter) in the
volume reveal that, in agreement with direct numerical simulation results, the intense
vortex structures are in the form of elongated ‘worms’ with characteristic diameter
of approximately 10η and characteristic length of 60–100η. Iso-surfaces of intense
dissipation show that the most dissipative structures are in the form of sheets and are
associated with clusters of vortex tubes. Approximately half of the total dissipation
occurs in structures that are generally sheet-like, whereas the other half occurs in
broad indistinct structures. The largest length scale of dissipation sheets is of order
60η and the characteristic thickness (in a plane normal to the axis of the sheet) is
about 10η. The range of scales between 10η (thickness of dissipation sheets, diameter
of vortex tubes) to 60η (size of dissipation sheet or length of vortex tubes) is consistent
with the bounds for the dissipation range in the energy and dissipation spectrum as
inferred from the three-dimensional model energy spectrum.

† Present address: GE Global Research, Bangalore, India.
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1. Introduction
The structure of intermediate and fine scales in turbulent shear flows is a long-

standing research problem and remains one of the most challenging aspects of
turbulent flows. The dynamics of intermediate and fine scales of turbulent shear flows
are important to turbulence theory and to the development and validation of subgrid
scale models used in large-eddy simulations of shear flows.

Batchelor & Townsend (1949) first reported the presence of intermittency in
turbulence, where the small-scale turbulent motions exhibit intense variations. They
performed hot-wire anemometry and calculated higher-order velocity derivatives,
indicating that the small scales in a turbulent flow are sparsely distributed in space.
Batchelor & Townsend (1949) stated that vorticity and other gradient quantities
(including dissipation) are made ‘spotty’ in the early stages of the decay and by some
intrinsic instability are kept ‘spotty’ throughout the decay.

After the first investigation by Batchelor & Townsend (1949), several experimental
studies worked towards statistical characterization of the small-scale motions (for
example see Kuo & Corrsin 1971; Saddoughi & Veeravalli 1994). Most of these
studies computed various statistical estimates like scaling exponents of probability
density distributions (p.d.f.s), structure functions, skewness and flatness for various
quantities such as vorticity, circulation and dissipation. A review of the work on
statistical analysis of intermediate and small scales in turbulence can be found in
Monin & Yaglom (1975) and Sreenivasan & Antonia (1997).

Statistical analysis of small scales does not reveal the geometrical structure of
vorticity or dissipation fields. However, several researchers, including Betchov (1956),
Tennekes (1968) and Lundgren (1982), have proposed models for the geometric
structure of small-scale turbulence. Betchov (1956) proposed a model in which the
presence of two positive principal strains causes vorticity to take the form of sheets.
Tennekes (1968) proposed an alternative picture where the small-scale structures
can be modelled as vortex tubes with diameter η (where η is the Kolmogorov
scale). Lundgren (1982) introduced the strained spiral vortex model, which he found
reproduced the k−5/3 energy spectrum.

Kuo & Corrsin (1971) performed hot-wire measurements to investigate the spatial
intermittency of turbulent shear flows and found that the extent of a typical active
region (which is defined as a region over which the instantaneous value of a velocity
gradient is several times larger than its mean value) was large compared to the
fine-scale structure itself. They concluded that active regions are more nearly rod-like
in shape rather than spherical or in the form of sheets. Schwarz (1990) performed
flow visualization measurements of grid turbulence and concluded that the structures
of small scales are in the form of layered sheets. The author also stated that the
structures were found to exhibit a spatial variation limited by the Kolmogorov length
scale. Douady, Couder & Brachet (1991) also performed flow visualization using
air bubbles and found that the intermittent vortex structures possess a ‘filamentary
shape’, and that these structures appear to become stretched/sheared due to larger
coherent regions.

A complete analysis of the three-dimensional structure of dissipation, vorticity
and other gradient quantities in turbulent flows requires detailed simultaneous three-
dimensional velocities and velocity gradient information. Such information has been
derived mainly from Direct Numerical Simulations (DNS) of turbulence. Although
previous experimental and analytical studies provide a range of geometric models for
the fine-scale structures, DNS studies of isotropic turbulence appear to agree that
intense regions of vorticity tend to form tubes, also called ‘worms’ (for example, Siggia
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1981; Kerr 1985; Ashurst et al. 1987; Vincent & Meneguzzi 1991; Ruetsch & Maxey
1991; Jimenez et al. 1993). Some researchers investigated the relationship between
vorticity and dissipation (Kerr 1985; Brachet 1991; Kida & Ohkitani 1992; Vincent
& Meneguzzi 1994) by visualizing these quantities, obtained from DNS datasets,
simultaneously. These studies concluded that intense dissipative structures are found
in the vicinity of intense vortex cores (or ‘worms’). However, the exact structure of
intense dissipation is not clearly defined. Brachet (1991) indicated that the regions
of intense enstrophy are spatially more concentrated than the energy dissipation.
Other studies found that the shape of the kinetic energy dissipation field is more
complicated since it contains sheet-, line- and blob-like structures (Siggia 1981; Kerr
1985; Yamamoto & Hosokawa 1988).

Most experimental studies in the literature rely on point measurements or flow
visualization techniques to speculate on the three-dimensional structure of the flow
field. Therefore those studies cannot provide insight into the instantaneous spatial
structure of the finest scales. Tsurikov (2003) performed two-component particle
image velocimetry measurements to resolve small and intermediate scales of the flow,
and concluded that intense regions of kinetic energy dissipation possessed sheet-
like structures. However, planar measurements cannot capture the complete spatial
structure of the flow field. Recently, Mullin & Dahm (2006a) performed dual-plane
stereoscopic experiments to study the fine and intermediate scales of a turbulent
shear flow. The technique enables computation of all nine velocity gradients over a
plane; however, the information is available only over a plane and therefore cannot
completely describe the three-dimensional structure. Zeff et al. (2003) reconstructed
a three-dimensional velocity field based on simultaneous high-speed particle image
velocimetry (PIV) measurements in three different planes of a small cube. The authors
found that dissipation and enstrophy are spatially and temporally separated and are
largely intermittent. Su & Dahm (1996) performed scalar imaging velocimetry where
the complete velocity gradient tensor of the flow field was obtained by inversion of the
conserved scalar transport equation. The authors investigated three-dimensional flow
fields of enstrophy and dissipation and concluded that both quantities are relatively
‘spotty’ with large values occurring very rarely. The field of view of the above-
mentioned study was approximately 15η × 15η, and as a result they were unable to
resolve the intermediate scales of the flow field.

In the present study, time-resolved stereoscopic particle image velocimetry is utilized
to measure three components of velocity in a plane and Taylor’s hypothesis is
employed to reconstruct a quasi-instantaneous volume of data. Experiments were
performed in the far field of an axisymmetric co-flowing jet where the Kolmogorov
scale is sufficiently large that the dissipation scales can be resolved. The pseudo-three-
dimensional data are used to compute the complete velocity gradient tensor along
with the three components of vorticity and other derived quantities such as three-
dimensional dissipation rates. The goal of this study is to experimentally investigate
the three-dimensional intermediate- and fine-scale spatial structure of vorticity and
dissipation.

2. Experiment facility and techniques
Experiments were performed in the far field of a mildly co-flowing axisymmetric

turbulent air jet. The co-flow facility is 920 mm wide by 920 mm long by 1170 mm
high, and was constructed of aluminium structural members and aluminium sheet
for the walls. The axisymmetric turbulent jet exhausted into a co-flow of air. The jet
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Figure 1. Schematic of the experimental setup. The inset shows a representative view
of the co-flowing jet.

issued upwards from a circular pipe, 26 mm in diameter (D), located at the centre of
the co-flow facility as shown in figure 1.

The jet fluid was air that was stored in a large high-pressure reservoir. The flow rate
was controlled by a manually operated valve and monitored using an electronic mass
flowmeter (McMillan 50D-15). Tsurikov (2003), who developed this experimental
facility, obtained velocity profiles using hot-film probes and documented the presence
of a fully developed turbulent pipe flow at the jet exit. The spectra at the centreline
indicated a −5/3 spectrum and did not have any dominant frequency. He also
performed additional hot-film and PIV measurements in various azimuthal planes
to ensure that the jet was axisymmetric at the exit. The jet velocity at the exit was
Uo = 3 m s−1. The co-flow was supplied by an industrial blower (Grainger/Dayton
model 5C508) which was operated at fixed speed. The co-flow entered the jet facility
through a network of PVC pipes, and was conditioned by sections of honeycomb
and fine-mesh screens prior to entering the test section. The co-flow velocity was
U∞ =0.15 m s−1. The boundary layer on the outside of the jet tube (due to the co-
flow) was laminar with an estimated thickness of 11 mm near the jet exit. Additional
details regarding design and construction of the flow facility and qualification of the
flow field at the jet exit (i.e. axisymmetry of the jet, mean velocity profiles, turbulence
intensities, etc.) are presented in Tsurikov (2003).

The following are some relevant length scales at the measurement location: jet
half-width (δ1/2) = 126 mm, Taylor micro-scale (λ) = 13.8 mm and Kolmogorov scale
(η) = 0.45mm. The Kolmogorov scale (η = (ν3/ε)1/4, where ν is the kinematic viscosity
and ε is the mean dissipation rate) was initially computed using an estimate for the
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mean dissipation that was based on local homogeneous isotropy. This calculation
gave an estimate for η = 0.53mm. However, as will be shown in the next section, the
dissipation computed, based on the stereoscopic data, conformed to the dissipation
estimate calculated, based on axisymmetric isotropy conditions prescribed by George
& Hussein (1991). Therefore, the mean dissipation rate computed from the data was
utilized to estimate the Kolmogorov scale quoted above (η = 0.45 mm). The Reynolds
number based on jet exit velocity and diameter ReD =5100 and the Reynolds number
based on Taylor micro-scale Reλ ≈ 150.

Cinematographic stereoscopic PIV measurements were performed in the ‘end-view’
plane (x2–x3) at a downstream axial location of x1 = 32D. (In this study, x1 is the axial
direction, and x2 and x3 are the two orthogonal radial directions.) The cinematographic
PIV system (shown in figure 1) consisted of an Nd:YLF laser (Coherent Evolution-90)
with an output wavelength of 527 nm and a pair of high-framing rate 1024 × 1024 pixel
resolution CMOS cameras (Photron FASTCAM-Ultima APX) that were operated at
a rate of 2 kHz. Both cameras were fitted with a Nikon 105 mm lens with an aperture
setting of f/5.6.

Glycerin-based droplets with a nominal size of 1–2 µm generated by a theatrical
fog machine (Rosco Model 1600) were used as PIV seed particles. The response time
(τR) of these seed particles is computed to be approximately 4 µs based on a particle
diameter of 1 µm. The Stokes number, defined as St = τR/τF (with τF the characteristic
flow time scale) must be much less than 1 for the particles to faithfully track the fluid
motion (Raffel, Willert & Kompenhans 1998). Given that the goal of this study is to
track small-scale motions, the characteristic flow time is the Kolmogorov time scale
τη =

√
ν/ε, which is approximately 15 ms. This gives a Stokes number of 2.5 × 10−4

and hence indicates that the particles easily track the velocity fluctuations in the flow.
The particles were seeded into the co-flow and subsequently entrained by the

developing jet. The seed particles were illuminated by a laser sheet (thickness ≈1 mm)
and the scattered light was captured by the two CMOS cameras in stereoscopic
arrangement. The cameras were oriented at an angle of 30◦ to the axis of the jet,
as shown in figure 1, and the Scheimpflug condition was enforced to maintain focus
across the entire field of view by orienting the lens plane at an angle to the image
plane (the Scheimpflug condition ensures that particle images appear focused across
the field of view: see Raffel et al. 1998 for details). This arrangement introduced
a strong perspective distortion, and as a result the magnification varied across the
image plane. This distortion was corrected by calibration using a fixed grid that
contains marker points. The target was aligned with the laser sheet that illuminated
the measurement plane, and the target subsequently translated at intervals of 0.5 mm
in both directions normal to the laser sheet. Digital images of the grid were captured
by both cameras for various locations of the target. The acquired images of the grid
were analysed using TSI PivCalib software to compute the magnification at each axial
location.

Cinematographic images were acquired for a duration of 1 s, corresponding to
a total of 2000 frames and 2 GB of data for each experimental run. Images from
the cameras were then transferred to a hard disk and processed to compute vector
fields. Successive particle images in the movie sequence were correlated to compute
PIV vector fields (�t =500 µs, since frequency of image acquisition is 2 kHz) with TSI
Insight 6.1 software. The final interrogation region was 16 × 16 pixels in size with 50%
overlap. The vector fields were validated and the missing vectors were interpolated
using a 3 × 3 local mean technique. The resulting vectors from each camera were then
combined to compute all three velocity components. The resolution of the resulting
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Figure 2. Sample vector field from a quasi-instantaneous space–time volume. Only a part of
the entire volume is shown. The size of the volume in outer units is 0.8δ1/2 × 0.6δ1/2 × 0.6δ1/2.
Only every other vector is shown for clarity.

stereoscopic vector fields is about 3η × 3η (1.35 × 1.35 mm2) and successive vectors
are separated by 1.5η (due to 50% overlap). The total field size is 76 × 76 mm2

(160η × 160η).
Taylor’s hypothesis with a convection velocity equal to the local mean axial

velocity u1(x2, x3) (u1, u2 and u3 are velocity components along the x1, x2 and x3

directions respectively) was utilized to reconstruct a quasi-instantaneous space–time
volume of data. The convection velocity (i.e. the mean axial velocity) varies over
the x2–x3 plane and consequently the axial coordinates are different for different
regions of the jet. The total size of the reconstructed quasi-instantaneous volume
is x1 × x2 × x3 = 1300η × 160η × 160η (5δ1/2 × 0.6δ1/2 × 0.6δ1/2). Figure 2 shows three-
dimensional velocity vectors from a sample part of the total volume. The field of view
of the volume in figure 2 is 250η × 160η × 160η (0.8δ1/2 × 0.6δ1/2 × 0.6δ1/2). The figure
clearly shows a distorted grid conforming to the variations in the local convection
velocity. The axial coordinates near the jet centre are stretched while the coordinates
away from the jet centreline (at larger radial locations) are compressed, since the
mean jet axial velocity (u1) is higher near the centre and is lower at the periphery.

Energy and dissipation spectra computed from the quasi-instantaneous volume
indicate that measurement noise affects the quality of data at high wavenumbers.
Therefore, a Gaussian smoothing filter with a filter width of lf = 3η was used to filter
the data along all the three directions. This filter width was chosen to match the PIV
interrogation window size of 3η to minimize loss of resolution in the cross-stream
directions. The use of a Gaussian filter with width of 3η is consistent with filtering
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Figure 3. Comparison of experimental data with model energy and dissipation spectra (from
Pope 2000). The model spectra were computed for Reλ ≈ 150. (a) Energy spectra and (b)
dissipation spectra.

the data at approximately 2fη (where fη = u1/2πη is the Kolmogorov frequency and
is used as the filter frequency in almost all point measurement techniques) and should
therefore capture the velocity gradients accurately.

Figure 3(a) shows the energy spectrum of axial velocity E11 along the κ1 direction,
where κ1 is the wavenumber in the axial direction (the wavenumber is defined as
κ1 = 2π/Λ1 with units of radians/length, where Λ1 is the wavelength in the axial
direction). Note that the variation in convection velocity over the ‘end-view’ plane is
ignored while computing the axial wavenumbers to simplify the process. A constant
convection velocity u1 = 0.66 m s−1 (this is the mean axial velocity over the plane) is
used to convert frequency to wavenumber in the axial direction.

Pope (2000) proposed a model spectrum of the form

E(κ) = Cε2/3κ−5/3fL(κL)fη(κη), (2.1)

where E(κ) is the energy spectrum as a function of three-dimensional wavenumber
κ (κ = 2π/Λ, where Λ is the length scale that corresponds to κ). fL and fη are non-
dimensional functions whose forms can be found in Pope (2000). The one-dimensional
energy spectrum along the κ1 direction can be computed as

E11(κ1) =

∫ ∞

κ1

E(κ)

κ

(
1 − κ1

2

κ2

)
dκ. (2.2)

Figure 3(a) also shows the one-dimensional model spectra E11(κ1) computed from
the above-mentioned model. The figure shows that the data follow the model spectra
from Pope (2000), further validating the quality of the quasi-instantaneous data.

The one-dimensional dissipation spectrum can be derived from the energy spectrum
as D11 = 2νκ1

2E11. The dissipation spectrum shown in figure 3(b) is consistent with
the dissipation spectrum computed from the model. The general shape and features
of the one-dimensional dissipation spectrum in figure 3(b), including the peak around
κ1η ≈ 0.1, is consistent with spectra in various other studies in the literature (see
Antonia, Satyaprakash & Hussain 1982; Saddoughi & Veeravalli 1994; Mi & Nathan
2003).

The filtered pseudo-volume data were used to compute all nine components of the
velocity gradient tensor. A second-order central difference technique was employed
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i ui (m s−1) ∂ui/∂x1 (s−1) ∂ui/∂x2 (s−1) ∂ui/∂x3 (s−1) ωi (s−1)

1 0.19 19.9 24.1 25.4 35.4
2 0.13 23.2 16.2 23.0 38.2
3 0.13 23.5 21.6 16.2 37.1

Table 1. Root-mean-square (r.m.s.) statistics of three velocity components, nine velocity
gradients and three vorticity components. The vorticity components along the x1, x2 and
x3 directions are given by ω1, ω2 and ω3 respectively.

to compute all gradients. Additional details of the experimental technique and its
validation for the purpose of computing all nine components of the velocity gradient
tensor can be found in Ganapathisubramani, Lakshminarasimhan & Clemens (2006)
and Ganapathisubramani, Lakshminarasimhan & Clemens (2007).

3. Statistical results
3.1. Velocity gradient statistics

Mean and root-mean-square (r.m.s.) statistics of all three velocity components from
the cinematographic stereoscopic data were computed from 2000 vector fields. The
(r.m.s.) values listed in table 1 were found to be in agreement with independent
hot-wire measurements from Tsurikov (2003) and two-component ‘side-view’ (x1–
x2 plane) PIV measurements performed at the same downstream axial location by
Ganapathisubramani et al. (2006).

Table 1 also lists the (r.m.s.) statistics of all nine velocity gradients computed from
the quasi-instantaneous space–time volume. The (r.m.s.) of the velocity gradients
do not satisfy local isotropy conditions, especially along the mean-flow direction.
Previous studies in the literature have also reported the failure of experimental data
to satisfy local isotropy conditions especially along the mean-flow direction. George
& Hussein (1991) reported that the homogeneous isotropic conditions do not describe
experimentally obtained derivative moments in the far field of circular jets and plane
jets. The authors noted that the data instead conformed to axisymmetric isotropy
conditions that require that the following ratios are all equal to 1:

M1 =

(
∂u1

∂x2

)2 / (
∂u1

∂x3

)2

, (3.1)

M2 =

(
∂u2

∂x1

)2 / (
∂u3

∂x1

)2

, (3.2)

M3 =

(
∂u2

∂x2

)2 / (
∂u3

∂x3

)2

, (3.3)

M4 =

(
∂u2

∂x3

)2 / (
∂u3

∂x2

)2

, (3.4)

where x1 is the preferred flow axis (mean-flow direction). Antonia, Kim & Browne
(1991) identified the same issue in a DNS dataset of a turbulent boundary layer. The
velocity derivatives in the current study are at worst within 10 % of the axisymmetric
isotropy conditions. It must be noted that axisymmetric isotropy conditions are
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Figure 4. Probability density functions of velocity gradients. (a) Diagonal components and
(b) Off-diagonal components.

a subset of conditions required to satisfy homogeneous local isotropy, and the
inability of the velocity gradients along the mean-flow direction (especially the
velocity component along the mean-flow direction) to satisfy the complete set of
homogeneous local isotropy conditions led to the advent of axisymmetric isotropy
conditions (George & Hussein 1991).

The r.m.s. values of all three vorticity components computed from the time-resolved
stereoscopic data (see table 1) also satisfy the axisymmetric isotropy estimates to
within 5 %, which is consistent with results from previous experimental studies by
George & Hussein (1991) and computational studies by Antonia et al. (1991).

The mean kinetic energy dissipation rate (ε) was computed using all nine
components of the gradients and was found to be 0.069 m2 s−3. The mean dissipation
computed based on axisymmetric conditions (equation 59 in George & Hussein 1991)
is ε = 0.066 m2 s−3. This value is within 5 % of the mean dissipation (ε) computed
from the dataset.

Further analysis of the deviation from local isotropy of the velocity gradients
was performed by computing probability distributions of the velocity gradients.
Figures 4(a) and 4(b) show p.d.f.s of the diagonal components and off-diagonal
components of the velocity gradient tensor respectively. The diagonal components
in figure 4(a) show that the axial gradient of the axial velocity component
(∂u1/∂x1) exhibits differences compared to the other two diagonal components
(∂u2/∂x2 and ∂u3/∂x3), indicating deviation from local isotropy. Figure 4(b) shows
the p.d.f.s of off-diagonal components that appear to collapse for low-gradient values,
but exhibit a modest spread for large magnitudes (spread ≈ 100 s−1).

All the p.d.f.s reveal a straight-line decay in semi-logarithmic axes on either side of
zero consistent with exponential scaling at large values of these gradients. The presence
of exponential tails is consistent with previous experimental and computational
studies (for example, Sreenivasan & Antonia 1997). The exponential constants can be
determined for both left and right tails by computing

a = − d

d|q| logP (q), (3.5)

where a is the slope of the straight line (in semi-log axes), q is any velocity gradient
and P (q) is the probability density function of that velocity gradient. The scaling
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a ∂u1/∂x1 ∂u1/∂x2 ∂u1/∂x3 ∂u2/∂x1 ∂u2/∂x2 ∂u2/∂x3 ∂u3/∂x1 ∂u3/∂x2 ∂u3/∂x3

left 0.069 0.058 0.054 0.059 0.088 0.059 0.058 0.064 0.09
right 0.086 0.062 0.059 0.058 0.124 0.063 0.058 0.067 0.125

Table 2. Scaling exponents of left and right tails of the velocity gradients.
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Figure 5. (a) Probability density functions of all three principal strain rates and (b) joint p.d.f.
between normalized intermediate strain β∗ and magnitude of strain-rate tensor e. Contours
from 0.001 to 0.01 are shown in increments of 0.001.

exponents for the left and right tails were computed using a least-squares fit and are
listed in table 2. It can be seen from the values in table 2 that there are differences
between left and right scaling exponents for the diagonal terms. The differences in
the exponents in the off-diagonal components are smaller compared to the diagonal
components. The observed differences in the scaling exponents could be due to
departure from local isotropy and is consistent with the work of Mullin & Dahm
(2006a), who also reported similar differences in the scaling exponents of left and
right tails.

3.2. Strain-rate tensor, vorticity and dissipation

Statistical studies of the strain-rate tensor were carried out by calculating probability
distributions and joint probability distributions of all three principal strain-rates.
The principal strain rates at every point in the space–time volume were calculated
by computing the three eigenvalues of the strain-rate tensor (α, β and γ ). The
eigenvalues were ordered in magnitude as α >β >γ . Figure 5(a) shows the probability
distributions of all three principal strains. The general characteristics of the p.d.f.s are
consistent with the p.d.f.s of principal strain rates derived from different experimental
techniques in other studies in the literature (for example, see Su & Dahm 1996;
Mullin & Dahm 2006b). Figure 5(a) clearly shows that γ strain (compressive strain)
has a longer tail than α strain (extensive strain), suggesting that the compressive
strain attains larger magnitudes compared to the extensive strain. The distribution of
β strain shows that it has a longer tail for β > 0 compared to β < 0 to counter the
differences between the magnitudes of α and γ .

Betchov (1956) suggested that the intermediate strain (β), which can be positive or
negative, determines the local topology of the flow. When β is negative, there are two
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directions of compression and the flow field tends to possess line-like topology, and
when β is positive, there are two directions of extension and the local flow field has
sheet-like structures.

The normalized intermediate strain β∗ =
√

6β/e (where e =
√

α2 + β2 + γ 2 is the
magnitude of the strain-rate tensor) was computed to further study the distribution of
the intermediate strain. Figure 5(b) shows the joint probability distribution between
β∗ and e. The figure indicates that the intermediate strain becomes more positive for
large values of strain. The mean value of β∗ approaches 0.5 with increasing strain-
rate magnitude, and this observation is consistent with the findings of Ashurst et al.
(1987) in a DNS study of isotropic turbulence. This suggests that regions of high
strain rate tend to be sheet-forming. The shape of the strain-rate tensor was further
investigated by computing averages of α and γ principal strains conditioned on β > 0.
This calculation indicates that, for intense strain values, the strain-rate tensor is in
the form α : β : γ = 2.9 : 1 : −3 : 8, which is consistent with DNS results of Ashurst
et al. (1987) and Lund & Rogers (1994) and experimental results based on hot-wire
measurements by Tsinober, Kit & Dracos (1992).

For an incompressible flow (i.e. traceless velocity gradient tensor), the value of
β∗ should be bounded by ±1, by definition (see Betchov 1956; Ashurst et al.
1987). However, figure 5(b) shows that the value of β∗ extends to ±1.5 due to
the divergence error present in the data. This divergence error arises from various
sources of uncertainty present in the determination of the velocity gradient tensor.
(This includes measurement uncertainty, finite differencing errors, error in application
of Taylor’s hypothesis, etc. See Ganapathisubramani et al. 2007 for details.)

The effect of divergence error on β∗ can be explored by removing the divergence
error from the data using a simple correction scheme. The divergence error was
assumed to be distributed equally among the principal strain rates. An equal amount
of the error was subtracted from each of the principal strain rates to obtain a traceless
velocity gradient tensor. It must be noted that this assumption that the divergence
error is isotropic may not be accurate. The fact that the uncertainty in gradients of
out-of-plane velocity is larger than the uncertainty in other velocity gradients could
result in anisotropic distribution of the divergence error. Moreover, various other
correction schemes can also be used to obtain divergence-free data. Regardless, the
above-mentioned implementation will provide some basic information on the effects
of divergence error on β∗.

Figure 6 shows p.d.f.s of β∗ computed using the original experimental data and
with the corrected data (i.e. divergence-free data). The figure shows that the p.d.f.s
computed using the original data extends to ±1.5. The p.d.f.s of β∗ computed with
the transformed data is bounded by ±1, indicating that the bounds indeed depend
on the divergence error. The peak in the p.d.f.s shifts to a higher positive value from
β∗ = 0.4 (original data) to 0.5 (divergence-free data). Additionally, the two p.d.f.s
exhibit quantitative differences for positive values of β∗. These results are consistent
with those obtained by Lund & Rogers (1994), where they examined the effects of
experimental uncertainty on β∗ by adding isotropic divergence errors to DNS data.

Lund & Rogers (1994) noted that the removal of the divergence error may provide
the correct qualitative behaviour, but the quantitative information may still be
incorrect. Since the contributions from individual velocity gradients to the divergence
error is not known, removing the error equally from the principal strain rates is not
necessarily accurate. Therefore, the results to follow are presented without correcting
for the divergence error because the assumption that the error is isotropically
distributed, if wrong, could lead to incorrect conclusions being drawn from the data.
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Figure 6. Probability density functions of β∗. The solid line (square symbols) shows the p.d.f.
of β∗ computed with the original experimental data. The dashed line (circle symbols) show the
p.d.f. of β∗ computed using divergence-free data. The divergence error is removed by a simple
transformation where the error is isotropically subtracted from the principal strain rates.

Ganapathisubramani et al. (2007) investigated the effect of divergence error on the
data and concluded that the error makes a significant impact only in the regions
of low gradient/strain values. They concluded that the relative uncertainty in areas
of intense gradients is minimal and therefore the data accurately represents those
regions of large gradients.

The alignment of the vorticity vector with the strain-rate tensor is investigated
by computing the dot product of the strain-rate eigenvectors with the unit vector
along the direction of vorticity (ω̂ = ω/|ω|, where ω = ω1 x̂1 + ω1 x̂2 + ω1 x̂3 is the
vorticity vector). Since the eigenvector gives a line in space and not a direction along
a line, only the absolute value of the dot product is considered. Figure 7(a) shows the
alignment p.d.f. of vorticity with the eigenvectors of all the three principal strain rates
(i.e. the p.d.f. of cos φ = |ê · ω̂|, where ê is the eigenvector along either α, β or γ ). The
extreme values of cos φ = 0 and 1 (i.e. φ = 90◦ and 0◦, where φ is the angle between
the unit eigenvector and the unit vorticity vector), correspond to the vorticity vector
perpendicular to the eigenvector and the vorticity vector aligned with the direction
of the eigenvector, respectively. Figure 7(a) shows that the vorticity vector is most

likely to be aligned with the intermediate strain (i.e. maximum in p.d.f. for β̂ · ω̂ is at
cos φ =1), which is consistent with previous studies (Ashurst et al. 1987; Tao, Katz
& Meneveau 1999; Mullin & Dahm 2006b). The figure also shows that the vorticity
vector is least likely to point in the compressive strain direction. In fact, the p.d.f. of
γ̂ · ω̂ shows a peak at cos φ = 0, which suggests that the most likely orientation of
the vorticity vector is perpendicular to the principal compressive strain. The p.d.f. of
α̂ · ω̂ is relatively flat and indicates that the vorticity vector does not have a preferred
orientation with respect to the largest extensive strain.

Further analysis of the preferred alignment of the vorticity vector can be carried

out by computing the joint p.d.f. between β̂ · ω̂ and the magnitude of vorticity (square
root of enstrophy). Figure 7(b) shows the above-mentioned joint p.d.f., which reveals
that regions of intense enstrophy tend to align with the direction of intermediate
strain (cos φ ≈ 1). This observation is consistent with previous results obtained from
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Figure 7. (a) Probability density functions of the orientation of vorticity vector with
eigenvectors of the strain-rate tensor. (b) Joint p.d.f. between magnitude of vorticity
and orientation of vorticity with the eigenvector corresponding to the intermediate strain

(|cos φ| = |β̂ · ω̂|). Contours from 0.003 to 0.03 with a spacing of 0.003.

both experimental and computational studies (Ashurst et al. 1987; Ruetsch & Maxey
1992; Tsinober, Shtilman & Vaisburd 1997). This preferred alignment is found for all
values of intermediate strain.

The structure of dissipation can be investigated by computing p.d.f.s of
ε = 2νsij sij = 2νe2 (where sij = 0.5(∂ui/∂xj + ∂uj/∂xi), is the strain-rate tensor). Most
experimental studies compute a one-dimensional mean dissipation estimate based
on point measurement techniques (ε1D = ν(∂u1/∂x1)

2: for example, see Antonia,
Satyaprakash & Hussain 1980, 1982; Saddoughi & Veeravalli 1994), or a two-
dimensional estimate based on planar velocity measurements where only four in-
plane velocity gradients are available (see Saarenrinne & Piirto 2000; Saarenrinne,
Piirto & Eloranta 2001; Tsurikov 2003). In the current study, the complete velocity
gradient tensor was used to compute dissipation (i.e. ε = ε3D). Figure 8(a) shows
p.d.f.s of dissipation computed using the local isotropy assumptions (ε1D), dissipation
computed using only the velocity gradients in the x1–x2 plane (ε2D , which is analogous
to the dissipation computed in numerous two-component PIV-based studies), and
dissipation computed using the entire velocity gradient tensor (ε3D). Kolmogorov
(1962) postulated a log-normal distribution for kinetic energy dissipation to account
for the internal intermittency of turbulence. Although some researchers have shown
that this is inconsistent with the physics of incompressible flow (e.g. see Frisch 1995),
experimental and computation data of kinetic energy dissipation in the literature
seem to follow the log-normal distribution.

Figure 8(a) compares the three dissipation rates (ε1D , ε2D and ε3D) with the log-
normal distribution. The log-normal model is defined as

P (ε∗) =
1√

2πSε∗
exp

(
− (ln ε∗ − M)2

2S2

)
, (3.6)

where ε∗ is the non-dimensional form of kinetic energy dissipation (normalized by its
mean value; the mean values of ε1D , ε2D and ε3D are listed in table 2). M and S are
constants that can be adjusted to fit the log-normal model to the p.d.f.s. Figure 8(a)
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Figure 8. (a) Probability density functions of ε1D/ε1D , ε2D/ε2D and ε3D/ε3D . The values of
mean dissipation are listed in table 2. The figure also shows a least-squares fitted log-normal
distribution for the three p.d.f.s. (b) Instantaneous profiles of ε1D , ε2D and ε3D along the x2

direction.

Parameter Mean value (m2 s−3) S M

ε1D 0.006 1.54 1.37
ε2D 0.045 1.11 0.68
ε3D 0.065 0.94 0.49

Table 3. Mean values of dissipation rates and the constants for the log-normal model.

shows the log-normal curve fits for all three dissipation rates. The log-normal model
appears to be a relatively good fit for the p.d.f. of ε3D . This observation is consistent
with the observation of Mullin & Dahm (2006b), where ε3D computed using the
dual-plane stereoscopic technique was found to follow the log-normal distribution.
The model log-normal distribution seems to be a good approximation for the right
side tail of ε2D , however, the left tail (i.e. low values of dissipation) deviates from the
model. The log-normal approximation clearly does not model the distribution of ε1D .
The best fit constants for the log-normal model for all three dissipation rates are given
in table 2. The values of S and M decreases from ε1D to ε3D . Both ε1D and ε2D possess
more regions of low dissipation compared to ε3D owing to the projection of three-
dimensional dissipation structures on to a lower-dimensional space. The presence of
a long tail for low values of dissipation suggests that ε1D and ε2D may not accurately
reveal the true characteristics of dissipation.

Figure 8(b) shows representative instantaneous profiles of dissipation rates (ε1D , ε2D

and ε3D) along the x2 direction. The figure suggests that ε1D tends to underestimate the
value and scale of dissipation. Figure 8(b) also shows that the two-dimensional form
of dissipation, ε2D , underestimates the size (length) and peak values of dissipation
regions owing to the inclusion of only four terms from the velocity gradient tensor in
the computation of dissipation.
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0.01 are shown in increments of 0.001. (b) Joint p.d.f. between β∗ and ε. Contours from 0.005
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Joint p.d.f.s were computed to investigate the relationships between dissipation,
vorticity and strain rates. Figure 9(a) shows a joint distribution between the norm of
the vorticity vector (|ω|) and β∗. This figure indicates that regions of intense vorticity
seem to possess a preference for positive β∗, implying that intense vorticity regions
are associated with a sheet-forming strain field. This aspect is investigated in greater
detail by computing conditional p.d.f.s and is presented later in this section.

Instantaneous plots from DNS results (Siggia 1981; Jimenez et al. 1993) show
that intense vortex structures are in the form of tubes. Therefore, it would be
natural to expect β∗ to be negative in the regions of intense vorticity, since a
negative intermediate strain would give rise to a line- or tube-forming strain field.
However, joint p.d.f.s between enstrophy and β∗ indicates that regions of intense
vorticity reveal a marginal preference towards positive values of β∗ (although the
preference exhibited is weaker compared to dissipation, as explained later in this
section). Therefore, the presence/formation of vortex tubes might not be simply due
to the presence of a favourable strain field and may depend on some unsteady
process. This observation is consistent with the model proposed by Ruetsch & Maxey
(1991), who indicated that regions of moderate vorticity magnitude appear in the
form of sheets, and these sheets, owing to some underlying instability (perhaps
Kelvin–Helmholtz), roll up and form tubes of intense vorticity. This process cannot
be captured with snapshots of instantaneous information and would require time-
resolved three-dimensional information, which could be made available only through
computational studies.

Figure 9(b) shows the joint p.d.f. between the normalized intermediate strain (β∗)
and dissipation (ε). The shape of the joint p.d.f. is skewed towards positive values of
β∗ for intense values of ε. The p.d.f. contours inflect towards positive values of β∗ for
intense values of ε, which is marginally different from the joint p.d.f. between |ω| and
β∗, which is more rounded for intense values of |ω|. This suggests that intense values
of ε have a stronger propensity to occur in regions of positive β∗ (compared to |ω|).

The relationships between intermediate strain and dissipation, and intermediate
strain and vorticity can be further investigated by computing conditional p.d.f.s
of β∗. Figure 10(a) shows conditional p.d.f.s of β∗, where the p.d.f.s for various

thresholds of |ω|/|ω| > 0.5, 1, 1.5 and 2. The conditional p.d.f.s exhibit no discernible



156 B. Ganapathisubramani, K. Lakshminarasimhan and N. T. Clemens

β∗

p.
d.

f.

–1.5 –1.0 –0.5 0 0.5 1.0 1.5
0

0.2

0.4

0.6

0.8

1.0
|ω| > 0.5|ω|
|ω| > |ω|
|ω| > 1.5|ω|
|ω| > 2|ω|

(a) (b)

β ∗

–1.5 –1.0 –0.5 0 0.5 1.0 1.5
0

0.2

0.4

0.6

0.8

1.0

1.2

ε > 0.5 ε
ε > ε
ε > 1.5 ε
ε > 2 ε

Figure 10. (a) Probability density functions of β∗ conditioned on magnitude of |ω|. Four

different thresholds were used: |ω| > 0.5, 1, 1.5 and 2|ω|. (b) Probability density functions of
β∗ conditioned on magnitude of ε. Four different thresholds were used: ε > 0.5, 1, 1.5 and 2ε.

difference, indicating that regions of intense vorticity do not necessarily coincide with
regions of intense intermediate principal strain rate. The mean value of β∗ remains
nearly a constant (β∗ = 0.2), with increasing thresholds on magnitude of vorticity. This
inference is consistent with the previous observations in DNS studies (see Siggia 1981;
Jimenez et al. 1993), where the structure of regions of intense vorticity was found to
be in the form of tubes. The presence of large positive intermediate strain results in
two intense extensive principal strains that would tend to stretch the structure into
‘sheets’, and the fact that the instantaneous vortex structures are in the form of tubes
rather than sheets, reinforces the inference based on the conditional p.d.f.s that the
presence of intense vorticity does not imply large positive intermediate strain, or vice
versa.

Figure 10(b) shows the conditional p.d.f.s of β∗ for a range of thresholds on ε. The
threshold on dissipation for the four conditional p.d.f.s were ε/ε > 0.5, 1, 1.5 and 2.
The peaks in the conditional p.d.f.s move towards higher positive values of β∗ with
increasing threshold. The area under the curve of the conditional p.d.f.s for β∗ < 0
also decreases with increasing threshold. The mean value of β∗ increases from 0.2 to
0.5 with increasing value of dissipation threshold, indicating that intense dissipation
regions occur in regions of intense positive intermediate strain and is consistent with
the DNS results of Ashurst et al. (1987) and Lund & Rogers (1994). The strong
correlation between intense dissipation and β is in contrast with the behaviour of
vorticity, where regions of intense vorticity did not reveal any inclination towards
positive or negative regions of β (as seen in figure 10a).

4. Instantaneous results
The structure of the strain-rate, vorticity and dissipation fields can be further

studied by rendering instantaneous iso-surfaces of β , ω and ε over a volume. This
analysis is similar to those performed in previous DNS-based studies (Siggia 1981;
Yamamoto & Hosokawa 1988; Vincent & Meneguzzi 1991; Jimenez et al. 1993).

Figure 5(a) in the previous section shows that the p.d.f. of the intermediate strain
rate has a longer tail for β > 0 than for β < 0, indicating that the intermediate strain
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Figure 11. Structure of intermediate strain rate. (a, b) Two different perspectives of
iso-surfaces of β = 30 s−1. (c, d) Two different perspectives of iso-surfaces of β = −20 s−1.

attains larger positive values than negative values. Therefore, the structure of regions
of intense strain rate can be investigated by visualizing iso-surfaces of β at two
different values (one for β > 0 and another for β < 0).

Figures 11(a) and 11(b) show two different perspectives of iso-surfaces of β = 30 s−1,
which correspond to structures of intense positive intermediate strain rate (i.e. β = 3σβ ,
where σβ is the r.m.s. of the intermediate strain). At this elevated threshold the iso-
surfaces of positive intermediate strain reveal coherent structures that seem to be in
the form of sheets. A region of intense positive β is marked in figures 11(a) and
11(b). The marked region appears to be a ‘blob’ in figure 11(a); however, it is clear
from figure 11(b) that the structure of that marked region is in fact in the form of
a ‘sheet’. Investigation of several other individual structures indicates that positive
intermediate strain is in the form of sheets. In addition, as will be shown later in this
section, these regions of intense positive intermediate strain also coincide with regions
of intense dissipation.

Figures 11(c) and 11(d) show two different perspectives of iso-surfaces of
β = −20 s−1, which corresponds to structures of intense negative intermediate strain
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rate (i.e. β = −2σβ; note the lower threshold for negative intermediate strain). Both
figures indicate that intense negative intermediate strain does not possess an extended
coherent structure. The iso-surfaces in both figures are ‘spotty’ and do not extend
in any direction. From figure 11, it can be concluded that the sheet-forming strain
fields (β > 0) are organized into sheet-like structures, whereas line-forming strain fields
(β < 0) are organized as smaller-scale spotty structures, not as lines or tubes.

The structure of the vorticity field can be studied by examining the contours/iso-
surfaces of a vortex identification parameter that is based on the local flow topology.
Various studies in the literature have compared and contrasted several vortex
identification parameters (for example, Jeong & Hussain 1995; Cucitore, Quadria &
Baron 1999), but there is no general consensus on an optimal parameter to isolate
vortex cores. Zhou et al. (1999) used swirling strength (λ2

ci), which is the square
of the imaginary part of the eigenvalue of the three-dimensional velocity gradient
tensor, to visualize vortex cores in a DNS dataset of channel flow. They found that
this quantity, which isolates regions of fluid swirling about an axis, can be used to
visualize vortical structures. In this study, the swirling strength, defined as λ3D = |λci |,
is used to visualize swirling regions in the flow. Although swirling strength is used to
visualize the structure of swirling/rotational motion, it must be noted that the use
of other vortex identification parameters like enstrophy (or alternatively, the second
invariant of the velocity gradient tensor or λ2, as defined in Jeong & Hussain 1995)
does not alter the results or conclusions presented in this section. Moreover, previous
studies have observed that vortex structures educed by the different criteria using
non-zero thresholds are quite similar (for example, see Zhou et al. 1999; Dubief &
Delcayre 2000; Chakraborty, Balachandar & Adrian 2005).

Figures 12(a)–12(d) show iso-surfaces of λ3D = 75 s−1 (where mean and r.m.s.
values of λ3D correspond to 15 s−1 and 20 s−1 respectively). All the figures show
that the vortex structures are organized in tube-like structures, which is consistent
with observations made in previous DNS studies (Siggia 1981; Ashurst et al. 1987;
Ruetsch & Maxey 1992; Jimenez et al. 1993). These tube-like structures were named
‘worms’ by Jimenez et al. (1993), who indicated that these ‘worms’ were the most
intense realizations of background vorticity (i.e. the magnitude of vorticity in these
tubes is much larger than the root mean square of vorticity).

Further investigation of the size of the ‘worms’ was conducted by extracting a
cross-sectional plane of data normal to the axis of one elongated worm (marked A
in figure 12d). Figure 12(e) shows contours of λ3D in the cross-sectional plane normal
to the axis of a ‘worm’. The contours indicate a circular profile for the vortex core.
Figure 12(e) also shows a range of other vortex structures that cut across the plane.
Most notably, the cross-section of an elongated tube (marked B) indicates the typical
length of these worms to be approximately 60−100η. Figure 12(f ) shows a diametric
profile of λ3D/λm

3D along the line marked in figure 12(e) (where λm
3D is the maximum

value of λ3D within the vortex core). Jimenez et al. (1993) used enstrophy (|ω|2) as
the vortex identification parameter to isolate the ‘worms’ and subsequently fitted a
Gaussian shape to the radial distribution of axial vorticity (i.e. vorticity component
along the axis of the identified ‘worm’). They defined the local radius of the worm
as the 1/e radius of the Gaussian fitted to axial vorticity. Following the definition
proposed by Jimenez et al. (1993), the diameter of the core marked A in figure 12(f )
was computed as twice the 1/e radius of the Gaussian shape fitted to λ3D in a plane
normal to the axis of the ‘worm’. This diameter was found to be 9η. Figure 12(f )
also reveals diametric profiles of two other structures. The profiles indicate that the
core diameters of these structures vary between 8η and 12η. Analysis of other vortex
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cores indicates that the core diameter varies from 6η to 15η and is consistent with
the results of Jimenez et al. (1993), who found that the diameter of intense vortex
worms was nominally 8η. The observation that the worm core diameter is significantly
larger than the Kolmogorov scale is also consistent with the ‘strain-limited diffusion
scale for vorticity’, λν , defined by Buch & Dahm (1996). Buch & Dahm (1998) and
Mullin & Dahm (2006b) inferred from scalar dissipation measurements and dual-
plane stereoscopic measurements, respectively, that the smallest scale of vortical
structures is λν , which is about six times larger than the Kolmogorov scale. This
observation is not in agreement with the model proposed by Tennekes (1968), which
states that the tube diameter is of order η.

Tsurikov (2003) performed planar PIV in the x1–x2 plane (in the same facility used
in this study) and found that the kinetic energy dissipation structures possess a wide
range of sizes and shapes. However, the conclusions by Tsurikov (2003) were based
on planar data and it was not possible to speculate on the three-dimensionality of the
structure of dissipation. The reconstructed quasi-instantaneous volume in the present
study provides an opportunity to further investigate the three-dimensionality of these
dissipative structures. The instantaneous three-dimensional structure of dissipation
was investigated by examining iso-surfaces of ε. Figure 13(a) shows iso-surfaces of
ε = 0.4 m2 s−3, which is about six times the value of mean dissipation. Therefore, the
iso-surfaces of ε = 0.4 (≈ 6ε) represent intense dissipative regions in the flow field.
Figure 13(a) seems to show a wide range of shapes and forms for the dissipation
structure that vary from sheets to blobs. This observation is consistent with the
previous studies by Siggia (1981) and Yamamoto & Hosokawa (1988), where three-
dimensional visualization of kinetic energy dissipation obtained from DNS data was
found to be complex, containing sheet-, line- and blob-like structures.

The structure of dissipation can be examined in detail by isolating individual
structures. Consider the three characteristic blobs marked A, B and C in figure 13(b).
Figures 13(c) and 13(d) show views of the same blobs A, B and C from two
different perspectives. Figure 13(c) shows that the blobs A and B are in fact sheet-like
structures with finite thickness. Similarly, figure 13(d) reveals that the blob marked
C also possesses a sheet-like structure. Figures 13(c) and 13(d) also reveal multiple
structures (not marked) that are sheet-like, but appear to be blobs when viewed
from other perspectives. Movie sequences generated by rotating the pseudo-volume
along different axes reveal that most blobs (seen in figure 13a) are in fact sheets.
Additionally, the sheets of intense dissipation are also found to coincide with the
sheets of intense positive intermediate strain in figures 11(a) and 11(b).

To further investigate the thickness of the sheets of dissipation, a plane normal to
the axis of the dissipation sheet marked C is extracted as shown in figure 13(d). This
extracted plane (xa–x2, xa is the coordinate along the plane shown in figure 13e) is at
an angle ξ =60◦, where ξ is the angle made by the plane with x1–x2 plane. Figure 13(e)
shows contours of ε in the extracted xa–x2 plane (the coordinate xa = x3 sec ξ ). The
contours reveal that the dissipation sheet has a finite thickness. The contours also
indicate that the largest length scale of these sheets is of order 60–100η. For example,
the length of the sheet marked C is approximately 60η in the x2 direction. The
thickness of the dissipation sheet can be deduced by plotting the profile of ε along
the line marked xn, in figure 13(e). Buch & Dahm (1998) investigated the thickness of
scalar dissipation structures and the thickness was determined by the width where the
dissipation falls to 20 % of the local maximum value. Following the above-mentioned
definition for thickness, the profile, ε/εm versus xn (where εm is the maximum value
of dissipation in the sheet) in figure 13(f ) shows that the thickness of sheet C is



Three-dimensional structure of fine scales 161

Thickness, η
–10 –5 0 5 10
0

0.2

0.4

0.6

0.8

1.0

1.2 Structure A
Structure B
Structure C

x3––
η

x3––
η

x3––
η

x3––
η

120

(a) (b)

(c) (d)

(e) ( f )

60

0

0
60

0
–50

–100
–150

–200

–50

0

50

100
0 100

0

–50

–100

–150

–200

–250

–250

120

100

50

0

–50

0

0
–50

–100
–150

–200

120

90

60

30

0

0
–50

–100
–150

–200
–250

–300

–30

–250
50

100

–60

x2/η

x2/η

x2/η

x2/η

x3/η

x1/η

x1/η

x1/η

x1/η

A

A
B

C

B

C

C

120

90

60

30

0

–30

–30 0 30 60 90 120

ε
εn

10.0
6.3
4.0
2.5
1.6
1.0
0.6
0.4
0.3
0.2
0.1

Figure 13. Instantaneous dissipation structure. (a)–(d) Different views of iso-surfaces of
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approximately 10η. Figure 13(f ) also shows thickness profiles of structures A and
B. These thickness profiles were extracted from planes normal to those structures
and they indicate that the thickness of dissipation sheets varies between 8η and 10η.
Similar analysis of other sheets of dissipation shows that the thickness nominally
varies between 6η and 12η and this result is consistent with the observation made
by Tsurikov (2003) based on planar PIV measurements. These observations are also
consistent with the findings on scalar dissipation of Ruetsch & Maxey (1992) based
on DNS results, who noted that the scalar dissipation structures possess characteristic
thicknesses of approximately 5η and a length of approximately 60η.

The iso-surfaces of ε and λ3D can be visualized simultaneously to investigate
the instantaneous relationship between the vortical and dissipation structures.
Figures 14(a) and 14(b) show iso-surfaces of ε = 0.4 m2 s−3 (in blue) and λ3D = 75 s−1

(in gold) from two different perspectives. The figures show that intense dissipative
regions are not coincident with regions of intense λ3D: rather, the elongated tubes
of intense vorticity are surrounded by the sheets of intense dissipation (Kerr 1985;
Vincent & Meneguzzi 1994; Pradeep & Hussain 2006).

The joint p.d.f. between λ3D and ε was computed to investigate the concurrence
of intense values of the two quantities. Figure 15(a) shows the above-mentioned
joint p.d.f. in which the dissipation axis (ordinate) is plotted in logarithmic scale
(i.e. log ε) to stretch the axis to low values. The contour levels in the figure range
from 10−5 to 5 × 10−3 and follow an exponential distribution. The figure indicates
a high probability for λ3D =0 (within the first bin, as marked in the figure) for all
values of dissipation. The joint p.d.f. also shows that intense values of ε are not
correlated with large magnitudes of λ3D . For example, the joint p.d.f. reveals that
the probability that λ3D is equal to zero at the location where dissipation is equal to
0.4 m2 s−3 is 8 × 10−4, whereas the probability that λ3D is equal to 75 s−1 at a point
where ε is equal to 0.4 m2 s−3 is approximately 8 × 10−6. The probability is lower by
two orders of magnitude for the higher value of swirling strength. This suggests that
intense dissipation very rarely occurs concurrently with intense swirling strength (also
observed by Kerr 1985; Vincent & Meneguzzi 1994).

A further quantitative evaluation of this feature was performed by computing the
number density of λ3D conditioned on the presence of intense dissipation (number
density is defined as the total number of points in the dataset where the condition
prescribed is satisfied). Figure 15(b) shows the number densities of λ3D for various
thresholds of ε/ε > 0, 1.5, 3, 4.5 and 6. The figure indicates that the number of points
with large values of λ3D decreases with increasing dissipation threshold, suggesting
that intense dissipation is not present in the same areas as intense swirling strength.

Having established that intense dissipation and intense swirling strength are not
strongly correlated, a qualitative investigation on their mutual relationship was
performed by isolating representative regions that contain both intense swirling
strength and dissipation. It is clear that an isolated vortex tube in an otherwise
quiescent flow should not be associated with dissipation because solid body rotation
is strain-free; however, interactions among multiple tubes could certainly lead to
dissipation between and possibly within the tubes. Three different regions where
dissipation is found in the vicinity of vortex tubes are marked in figures 14(a)
and 14(b). Regions marked A and B possess a nested structure of multiple vortex
tubes with crumpled dissipation sheets located between the tubes, whereas the region
marked C does not have multiple tubes. Only two vortex tubes and an isolated
sheet of dissipation are found in region C. To examine the strength of these isolated
sheets, the threshold for dissipation iso-surfaces was increased from ε =6ε to ε =10ε.
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Figure 14(b) shows the iso-surfaces for λ3D = 75 s−1 and ε = 0.6 m2 s−3 (10ε). This
figure indicates that regions of extremely intense dissipation are found predominantly
in regions where there are multiple vortex cores. At this elevated threshold, the size
of certain dissipation sheets decreases from 60–100η to about 30η, and some other
dissipation sheets just disappear. For example, the dissipation sheet marked C is no
longer present at this higher threshold. However, the crumpled sheets in regions A
and B are present even at this higher threshold (size of approximately 30η). Overall,
figures 14(a)–14(c) indicate that extremely intense dissipative regions occur between
multiple vortex tubes where the strain fields induced by these vortex tubes overlap.

Previous computational studies (Kida & Ohkitani 1992; Melander & Hussain 1993;
Pradeep & Hussain 2006) have noted that the induced strain rate is maximized in
regions between multiple vortex columns/tubes. This is entirely consistent with the
above observation where intense dissipative structures are found in areas between
tubes of intense vorticity.

The local structure of dissipation around a vortex tube can be further investigated
by considering a zoomed-in view of the nested structure marked A in figure 14(c).
Figure 14(d) reveals a closer look at the iso-surfaces of λ3D and ε in region A,
and indicates that the sheet of dissipation is crumpled and nested between two
or more cores. Contours of ε in a cross-sectional plane normal to a vortex core
is shown in figure 14(e) (figure 16a shows the same dissipation field in grey-scale
without the iso-surfaces of vortex cores, for the sake of comparison). The contours
show that the dissipation structure around the vortex core is in the form of an
annulus; however, the annular region is not radially symmetric. This observation
is consistent with the findings of other DNS-based studies, where visualization of
isotropic turbulence indicated that moderate dissipation tended to surround the
vortex tubes (Kerr 1985; Brachet 1991; Vincent & Meneguzzi 1994). Figure 14(f )
shows contours of intermediate strain rate (β) in the same cross-sectional plane
(figure 16b shows the same intermediate strain field in grey-scale, without the iso-
surfaces of vortex cores). The figure indicates that the intermediate strain possesses
intense positive values in the regions of intense dissipation consistent with the findings
based on joint and conditional p.d.f.s in the previous section. This provides further
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Figure 16. (a) Contours of ε/ε in a plane normal to a vortex core; contours ranging from
0.5 to 5 are shown. (b) Contours of β strain rate in a plane normal to a vortex core; contours
ranging from –30 s−1 to 30 s−1are shown. (a) and (b) are identical to figures 14(e) and 14(f ),
respectively; however, the iso-surfaces of vortex tubes are not shown here for the sake of
comparison.

support for the presence of sheet-like intense dissipative structures, since the sheet
structure is induced by the presence of two extensive strains. It should also be noted
from figures 14(d) and 14(e) (in liaison with figures 16a and 16b) that neither β nor ε

possess significantly large values in the areas occupied by the iso-surfaces of λ3D (i.e.
regions of swirling/rotational motion).

Based on the results discussed above, one might assume that that almost all
dissipation occurring in the flow field is from these sheet structures. However, regions
of intense dissipation contribute to only a small part of the total dissipation in the
flow field. This aspect can be investigated by computing the percentage contribution
of intense dissipation to the total dissipation. The cumulative dissipation from points
with dissipation up to and greater than a certain threshold and its percentage
contribution to the total dissipation in the flow field was computed. Thus

CD =

∑
ε(ε > εt )∑

ε
(4.1)

UD =

∑
ε(ε < εt )∑

ε
= 1 − CD, (4.2)

where εt is the threshold on dissipation, CD is the cumulative dissipation from points
where ε is greater than εt and UD is the cumulative dissipation from points where ε

is less than εt .
Figure 17(a) shows the variation of both CD and UD with εt . The curves indicate

that up to 30 % of the total dissipation comes from values lower than the mean
dissipation. Conversely, the intense dissipation regions (ε > 6ε) contribute only about
10 % to the total dissipation. Therefore, the intense dissipation sheets shown in
figure 13 contribute only about 10 % to the total dissipation. Figures 17(b)–17(e)
show four sample realizations of dissipation contours in the x2–x3 plane. These
contour plots are uncorrelated in time. The dissipation values are normalized by
the mean dissipation, and the contours shown range from 0.1ε to 10ε and follow
a logarithmic distribution. The range of contours shown corresponds to capturing



166 B. Ganapathisubramani, K. Lakshminarasimhan and N. T. Clemens

%
 c

on
tr

ib
ut

io
n

10–2 10–1 100 101 1020

20

40

60

80

100

(a) (b)

(c) (d)

(e) ( f )

CD
UD

xn/η
–10 –5 0 5 10

Structure A

Structure B

ε/
ε m

0
0.2
0.4
0.6
0.8

1

ε/
ε m

0
0.2
0.4
0.6
0.8

1

ε/
ε m

0
0.2
0.4
0.6
0.8

1

Structure C

εt/ε

0.1
120

100

80

60

40

20

0

–20

–40 –20 0 20 40 60 80 100

0.2 0.3 0.4 0.6 1.0 1.6 2.5 4.0 6.3 10.0

0.1 0.2 0.3 0.4 0.6 1.0 1.6 2.5 4.0 6.3 10.0 0.1 0.2 0.3 0.4 0.6 1.0 1.6 2.5 4.0 6.3 10.0

0.1 0.2 0.3 0.4 0.6 1.0 1.6 2.5 4.0 6.3 10.0

x3––
η

x2/η

120

100

80

60

40

20

0

–20

–40 –20 0 20 40 60 80 100

120

100

80

60

40

20

0

–20

–40 –20 0 20 40 60 80 100

x3––
η

x2/η

x3––
η

x2/η

120

100

80

60

40

20

0

–20

–40 –20 0 20 40 60 80 100
x2/η

εm = 1.5 ε

εm = 8 ε

εm = 12 ε

Figure 17. (a) Percentage contribution to the total dissipation from cumulative dissipation
up to and greater than a certain threshold. (b)–(e) Sample instantaneous planar fields of
dissipation in the x2–x3 plane. The fields are uncorrelated in time. The dissipation values are
normalized by the mean dissipation. The contours shown range from 0.1ε to 10ε and the
grey-scale values follow a logarithmic scale. (f ) Profiles of dissipation along lines marked A,
B and C in figure 17(e).



Three-dimensional structure of fine scales 167

Quartile Condition Percentage contribution

1 0 < ε < ε 25%
2 ε < ε < 2ε 25%
3 2ε < ε < 3ε 25%
4 3ε < ε < εmax 25%

Table 4. Regions of dissipation with equal contribution to the total dissipation, as deduced
from the cumulative dissipation plots in figure 17(a).

99 % of all dissipation in the flow field (as seen in figure 17a). These figures indicate
that a large amount of area is occupied by regions with dissipation values that are
less than the mean dissipation, and these low-dissipation regions seem to exhibit a
wide range of scales. Figures 17(a)–17(e) also indicate that the sheet-like structures
of intense dissipation roll off to values less than ε; however, they tend to maintain
the sheet structure. Therefore, these intense dissipation sheets seem to be a part of a
larger structure which also possesses a sheet-like structure. This aspect is explored in
greater detail later in this section.

Sreenivasan (2004) stated that intense values of kinetic energy dissipation occur
over very fine length scales and concluded that the resolution required to capture
these intense dissipation regions must be based on the value of instantaneous

dissipation and not on the mean dissipation (i.e. resolution � ≈ (ν3/εt )
1/4

, where εt is
a representative value of intense dissipation much greater than the mean dissipation).
A plausible interpretation of the above-mentioned resolution requirement is to expect
intense dissipative structures to possess smaller length scales (smaller thickness/length)
compared to the length scales of structures with lower dissipation values. Figure 17(f )
shows thickness profiles of three representative dissipation structures marked A, B
and C in figure17(e). The maximum dissipation within these three structures is 12ε,
6ε and 1.5ε, respectively. The profiles in figure 17(f ) indicate that the thickness of
structures A, B and C is 12η, 14η and 10η, respectively (following the same definition
for thickness used previously in this section). Although structure A is about eight
times as intense as structure C and structure B is over four times more intense
than structure C, the thicknesses of all three structures are within the same range.
This indicates that the magnitude of dissipation does not seem to affect the length
scale of a structure. The resolution required to determine the true value of the highest
dissipation structures may depend on the instantaneous value of dissipation; however,
the profiles in figure 17(f ) indicate that the structure of a dissipative region can be
captured with coarse resolution since the length scale of the these structures do not
depend on their magnitude. In fact, a careful viewing of many sample dissipation fields
shows that regions of highest dissipation tend to be associated with the largest, not
the smallest, sheet-like structures in the flow field. These observations are consistent
with the scalar dissipation-based conclusions of Schumacher, Sreenivasan & Yeung
(2005) who explored the fine scales of scalar dissipation and found that the very fine
scales are unlikely to be related to the most intense dissipation events.

To investigate further the spatial structure of regions of different dissipation
magnitude, the total dissipation was divided into four intervals (quartiles) as shown
in table 4. Each quartile in the table contributes 25 % of the total dissipation. The
characteristics of the structures in each quartile can be visualized as in figures 18(a)–
18(d), which show representative instantaneous plots of the area covered by each
quartile (these figures are from the instant shown in figure 17e). Note that the
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the instant in figure 17(e).
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images are binary such that points that lie in a particular quartile are rendered black,
and points not in the quartile are white. The bottom 25 % of the total dissipation
(quartile 1, figure 18a) appears to be in the form of structures that are relatively large.
In contrast, the top 25 % of the total dissipation (i.e. quartile 4, figure 18d) appears
in regions that are in the form of more sheet-like structures. The intermediate 50 %
dissipation regions (quartiles 2 and 3) appear to correspond to the outer periphery
of the regions of intense dissipation, and these regions appear to form a bridge
between quartiles 1 and 4. Figure 18(g) shows all points that are either in quartile
3 or 4. The amalgamation of quartiles 3 and 4 does not change the features of
the dissipation structure, since the structures still maintain the sheet-like appearance.
However, figure 18(e) shows that merging quartile 2 with quartiles 3 and 4 seems to
considerably alter the structure of the dissipation field. In this case, the dissipation
field appears as large blobs with no definite characteristic structure. Therefore, it
could be concluded that close to 50 % of the total dissipation are from the extended
sheet-like structures. These sheets of intense dissipation occur presumably due to the
overlap of the induced strain field of multiple vortex tubes. The remaining 50 % of
the total dissipation is from the background, where the induced strain field from the
vortex tubes is much weaker.

Observations based on the analysis of quasi-instantaneous volumes of data indicate
that intense vorticity possesses extended tube-like structures. The core diameters
of these tubes is of order 10η and they extend to lengths of 60–100η in any
arbitrary direction. Large-magnitude dissipative regions are in the form of sheets
with characteristic thickness of approximately 10η. The size of these sheets (length
and width) extends to about 60η. These dissipative regions also contain positive
intermediate principal strain, which explains the sheet structure of these regions. The
dissipative structures are found in the vicinity of vortex tubes and the length scales
of tubes of vorticity and sheets of dissipation are found to be similar, suggesting that
these areas of intense dissipation are caused by the interaction between multiple vortex
tubes. The presence of multiple intense vortex tubes in the neighbourhood seems to be
a necessary condition for the presence of intense dissipation. Examination of several
quasi-instantaneous iso-surfaces suggests that extremely intense dissipative structures
(ε > 10ε) are also sheet-like with a size of approximately 30η and are predominantly
found in the neighbourhood of a nested group of multiple vortex tubes.

5. Discussion
The sheets of intense dissipation and its surrounding regions (i.e. regions where ε

is greater than 2ε) contribute close to 50 % of the total dissipation in the flow field.
These intense dissipation regions are found in the vicinity of multiple vortex tubes
or a cluster of nested vortex tubes. The induced strain fields from these vortex tubes
overlap in those regions, resulting in intense kinetic energy dissipation. Figure 19
illustrates the effect of having multiple cores in close proximity. Note that the vortex
tubes within a cluster are not necessarily orthogonal. The remaining 50 % of the
total dissipation is from regions of low dissipation (i.e. ε < 2ε). These low-dissipation
regions occupy a large fraction of the total area and appear as blobs. The shetch in
figure 19 shows that these regions of low dissipation occur in the far field of multiple
vortex tubes or in the vicinity of isolated vortex tubes where the strain induced is
much weaker.

The observed physical structure of vorticity and dissipation can also be interpreted
in terms of the energy and dissipation spectra. Figures 20(a) and 20(b) show the model
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Figure 19. Schematic representation of the near- and far-field effects of elongated vortex
tubes. Intense dissipation is present in the vicinity of cluster of vortex tubes. Note that the
vortex tubes in the cluster are not necessarily orthogonal. Low magnitude dissipation is found
in the far field or in the presence of isolated vortex tubes.
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Figure 20. (a) Three-dimensional model energy spectrum computed using (2.1).
(b) Dissipation spectrum computed from the model energy spectrum using D(κ) = κ2E(κ).

three-dimensional energy spectrum computed from (2.1) and the three-dimensional
dissipation spectrum computed as D(κ) = 2νκ2E(κ). Pope (2000) computed cumulative
dissipation to quantify the scales of dissipative motions and concluded that
the dissipative range begins at κη ≈ 0.1 (only 10 % of dissipation comes from
wavenumbers less than this value) and extends to κη ≈ 0.7 (90 % of dissipation
is from wavenumbers below this value). Pope (2000) noted that the dissipative eddies
responsible for the bulk of dissipation is in this range.
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The lower-bound wavenumber (κη ≈ 0.1) corresponds to a wavelength of
approximately 60η (2πη/Λ ≈ 0.1 results in Λ ≈ 20πη). Importantly, the three-
dimensional instantaneous iso-surfaces in the previous section indicated that the
nominal size of dissipation sheets and length of intense vortex tubes is also about 60η.
This length scale is also comparable to the Taylor micro-scale that was found to be
65η. This observation is consistent with the model proposed by Tennekes (1968), where
the length of the vortex tubes was of order the Taylor scale. It is possible, however, that
the agreement between the sheet/tube lengths and the Taylor scale is coincidental,
and really just reflects the fact that the range of scales at the current Reynolds
number is relatively small. Figure 20(b) indicates that the peak in the dissipation
spectrum is at κη ≈ 0.25, which corresponds to a length scale of 30η. This length
scale is comparable to the size of extremely intense sheets of dissipation. The high-
wavenumber bound of the dissipation range κη ≈ 0.7 (wavelength of approximately
8η) physically corresponds to the thickness of intense dissipation sheets and diameter
of intense vortex tubes (contrary to the model suggested by Tennekes 1968). It must
be noted that the intense dissipation structures contribute only 50 % of the total
dissipation. However, all the contributions from the intense structures appear within
the above-mentioned wavenumber range, whereas the remaining 50 % of the total
dissipation, which is from the background, appear across the entire range of length
scales (and therefore the entire wavenumber range).

The high-wavenumber bound for the dissipation range in the spectra indicates a
characteristic thickness/diameter for the dissipation sheets/vortex tubes. Similarly,
the lower bound for the dissipation range points to the size and the length of
dissipative sheets and vortex tubes. This suggests that regions of both intense
vorticity and dissipation possess physical length scales that are significantly larger
than the theoretical Kolmogorov length scale (Su & Dahm 1996; Buch & Dahm 1998;
Mullin & Dahm 2006b). Therefore, the Kolmogorov scale is not properly interpreted
as the characteristic size of regions of spatially correlated dissipation, since such
regions are of order 8 to 10 Kolmogorov scales, or so. Perhaps a better interpretation
of the Kolmogorov scale is as a resolution requirement; i.e. it is the scale that must be
resolved (within a factor of 2 to 3) in order to resolve the dissipation distributions in
the most dissipative structures. In other words, the Kolmogorov scale is the scale that
is required to capture (or resolve) the thickness profile of the dissipation sheets or the
cores of the vortex tubes. At the Kolmogorov scale, the gradients contribute negligibly
to the mean dissipation, but more significantly to the peak dissipation events.

6. Conclusions
Cinematographic stereoscopic PIV experiments were performed to resolve small

and intermediatec scales (scale: ≈ 3η–160η) in the far field of an axisymmetric co-
flowing jet. Measurements were performed in a plane normal to the axis of the jet. The
time-resolved velocity measurements were then converted into a quasi-instantaneous
three-dimensional reconstruction of the jet. Taylor’s hypothesis was applied to the
data along the jet axial direction to reconstruct the axial spatial extent. The availability
of quasi-three-dimensional data enabled computation of all nine components of the
velocity gradient tensor over the volume, which could be utilized to investigate the
structure of dissipation and vorticity.

The (r.m.s.) of the velocity gradients and the three components of vorticity were
all found to satisfy the axisymmetric isotropy conditions proposed by George &
Hussein (1991) to within 10 %. The mean dissipation value (ε) was also found to be
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consistent with the dissipation estimate computed following the axisymmetric isotropy
conditions.

The relationship between the strain-rate field and the vorticity was investigated
by calculating the orientation of the principal eigenvectors of the strain-rate tensor
with respect to the vorticity vector. The results indicate that the vorticity vector is
most likely to be oriented along the intermediate strain and is least likely to be
along the largest compressive strain, in agreement with previous studies. Conditional
p.d.f.s of normalized intermediate strain indicate that regions of intense vorticity
possess a marginal preference for positive values of intermediate strain. Although
the conditional mean value of β∗ is positive for various thresholds of enstrophy,
it remains a constant with increasing threshold, indicating that regions of intense
enstrophy do not have a preference for intense positive or negative β∗. Joint p.d.f.s
between dissipation and the intermediate principal strain indicate that the regions of
intense dissipation tend to occur at locations where the strain field is sheet-forming.
The conditional mean value of β∗ increases with increasing threshold of dissipation,
suggesting that intense dissipation values occur in regions of intense intermediate
strain. This observation reinforces the conclusion that dissipation structures are
sheet-like due to the presence of two high-magnitude extensive principal strains.

The availability of quasi-instantaneous space–time volumes of data enable
visualization of iso-surfaces of strain rate, vorticity and dissipation that can shed
light on the structure of intermediate and fine scales of turbulent flow. Investigation
of iso-surfaces of swirling strength in a quasi-instantaneous volume reveals that the
intense vortex structures are elongated in one direction and appear to be in the form
of ‘worms’. A cross-sectional view of these ‘worms’ indicates that these vortex cores
have a diameter of approximately 10η, consistent with results from DNS of isotropic
turbulence (for example, Siggia 1981; Jimenez et al. 1993). The characteristic length
of the worms is about 60–100η.

Iso-surfaces of intermediate strain rate and dissipation show that the regions of
intense positive intermediate strain and intense dissipative regions are coincident and
are in the form of sheets. The dissipation sheets are found to be in the neighbourhood
of intense vortex tubes and extremely intense dissipation sheets (ε > 10ε) appear in
the vicinity of multiple nested vortex tubes. Intense dissipation does not occur within
a vortex tube but results from the interaction between the nested groups of vortex
tubes. Analysis of thickness profiles of the dissipation sheets (in a plane normal to the
axis of the sheet) indicates that the thickness varies between 6η and 12η. The largest
length scale of these sheets (length or width) extends to 60η. These intense dissipation
sheets contribute close to 50 % of the total dissipation in the flow field. The remaining
50 % of the total dissipation is from the background where the instantaneous value
of dissipation is close to or less than the mean value of dissipation.

Visualization of quasi-instantaneous data indicates that the intense dissipative
structures and vortex tubes possess physical scales that are much larger than the
Kolmogorov scale, which is consistent with the findings based on investigation of
energy and dissipation spectra. The dissipation range in the dissipation spectrum
(i.e. 0.1 <κη < 0.7, the range of wavenumbers that contribute to the bulk of the
dissipation) is consistent with length scales of intense vortex tubes and dissipation
sheets. The lower bound for the dissipation range (κη ≈ 0.1) corresponds to a length
scale of approximately 60η, which is analogous to the length of vortex tubes and
dissipation sheets. Similarly, the upper bound of the dissipation range (κη ≈ 0.7, which
corresponds to a length scale ≈ 8η) is consistent with the thickness of dissipation
sheets and the diameter of the vortex tubes.
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